
Drug addiction consists of different phases, begin-
ning when non- problematic (recreational) use esca-
lates to compulsive and/or problematic use and then 
cycles through periods of abstinence (withdrawal), and 
relapse1–3 (Fig. 1). The cycle is often exacerbated by soci-
etal stigma of people who use drugs4, social isolation, job 
loss, incarceration and other losses of the ‘social capital’ 
that would otherwise be protective5–7.

In 1997, US National Institute on Drug Abuse (NIDA)  
Director Alan Leshner published a commentary in 
Science whose title declared: “Addiction is a brain dis-
ease, and it matters”8. That commentary, and articles 
accompanying it9,10, argued that identification of cellular 
and circuit mechanisms of addiction would lead to new 
ways to prevent and treat compulsive drug use, drug craving 
and relapse. Since then, technological advances have 
improved our understanding of the brain mechanisms 
underlying behavioural effects of addictive drugs 
in classic animal models, including psychomotor 
sensitization11, conditioned place preference (CPP)12, 
drug withdrawal13, drug discrimination14, drug 
self- administration15,16, extinction of drug- reinforced 
responding17,18, reinstatement of drug seeking after 
extinction19 and incubation of drug craving after 
home- cage forced abstinence20 (Supplementary Table 1).

However, the combination of these traditional 
models with modern neuroscience technologies, 
including optogenetics and chemogenetics, has not 
changed the options available to people who present for 
treatment5,21. This problem is not unique to addiction22, 
but it is an increasing source of disappointment23, and 
has led some to question the validity of animal mod-
els of addiction24. The models described above have 
obvious limitations because human addiction is char-
acterized by drug use despite immediate or delayed 
adverse consequences, escalation of drug use over 
time and choice between drug use and abstinence.  
In addition, all of these behaviours may be modulated by 
human- specific cognitive processes24. The limitations 
shared by psychomotor sensitization, CPP and drug  
discrimination are that drug exposure is non- contingent 
and low. A limitation of many published studies using 
drug self- administration and reinstatement is that daily 
access is temporally restricted (1–3 h per day) and 
rarely involves choices between drug and non- drug 
rewards25. A limitation of extinction and reinstatement 
procedures is that human abstinence does not involve 
operant extinction26. A limitation of classic procedures 
for incubation of craving is that abstinence is forced27, 
while in humans abstinence is often chosen, either 
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Resumption of drug- taking 
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to avoid adverse consequences or to retain or obtain 
alternative rewards28.

These limitations might help account for short-
comings in predictive validity. As discussed elsewhere, 
an animal model can have predictive validity with-
out phenomenological similarities to the human 
condition29,30. Additionally, traditional models such as 
drug self- administration and reinstatement do have 
some postdictive validity: they ‘predict’ the effectiveness 
of already approved treatments such as naltrexone, 
buprenorphine and methadone31–33. However, with the 
exceptions of the α4β2 nicotinic acetylcholine receptor 
partial agonist varenicline for nicotine addiction34 and 
the preferential µ opioid receptor (MOR) antagonist 
naltrexone for alcohol addiction35, years of mechanis-
tic neuropharmacological research using traditional 
animal models have not resulted in ‘forward translation’ 
or ‘prospective’ predictive validity5,36 (Tables 1and 2).  
It is important to examine whether this problem can be 
addressed by focusing on features of the human condi-
tion that are clinically important but have not been cap-
tured by the commonly used animal models described 
in Supplementary Table 1.

In this Review, we first describe refinements of tra-
ditional models designed to capture critical features of 
human addiction, including escalation of drug intake25, 
adverse consequences of drug use37, intermittent drug 
access38, choice between drug and non- drug rewards36,39, 

and individual vulnerability to addiction based on crite-
ria similar to those in the fourth edition of the Diagnostic 
and Statistical Manual of Mental Disorders (DSM- IV)40 
(Fig. 1). We discuss brain mechanisms identified in 
these models, and their potential predictive validity for 
identifying new treatments.

We then introduce a reverse translational approach41 
whose goal is to develop models that mimic clinically 
successful treatments: opioid agonist maintenance42, 
contingency management43 and the  community- 
reinforcement approach44. We discuss how this approach 
could help identify new biomedical treatments and 
eluci date relapse- related neurocircuits. We conclude 
with a clinical perspective.

Advances in animal models of addiction
In this section, we describe refinements to existing 
animal models. For each class of models, we provide a 
historical perspective and briefly summarize the main 
results in the realms of behaviour, neuropharmacology 
and neurocircuitry.

Escalation of drug intake. In 1969, Deneau et al.45 
gave rhesus monkeys unlimited access (24 h per day) 
to seve ral opioids and psychostimulants. Under this 
regimen, monkeys rapidly transitioned from stable 
hourly drug self- administration to binge- like res-
ponding that in the case of cocaine (but not morphine) 

Addiction
phases

Extended continuous
daily drug access

Extended intermittent
daily drug access

Escalation
of drug use

Compulsive and/or
problematic use

Non-
problematic

or recreational
use

Relapse

Abstinence
(withdrawal)

Drug choice

Behavioural
economics

Adverse consequences
of drug taking

DSM-based
individual differences

Extinction-based
• Cues
• Contexts

Forced abstinance
• Home cage

Opioid agonist
maintenance

Voluntary abstinence
• Adverse consequences
• Positive alternatives (choice)

Incubation of
drug craving

Reinstatement/relapse
• Cues
• Context
• Drug priming
• Stress

Drug choice

Drug choice

Behavioural
economics

Second-order
reinforcement
schedule

Short intermittent
daily drug access

Short continuous
daily drug access

Behavioural economics

Second-order
reinforcement
schedule

Fig. 1 | Addiction phase and animal models. The inner segments of the chart show the different phases of addiction  
in humans. Outside the external grey circle are listed examples of preclinical research approaches (animal models) that  
have been used to investigate different behavioural features of human addiction within each phase. DSM, Diagnostic and 
Statistical Manual of Mental Disorders.

Compulsive drug use
Continued use of a drug 
despite (known) adverse 
consequences.

Drug craving
an affective state described  
as an urge for drug; it can  
be induced in human drug 
users by exposure to the 
self- administered drug,  
drug cues or stress.

Predictive validity
The extent to which 
laboratory- animal behaviour 
induced by an experimental 
manipulation predicts human 
behaviour induced by a  
similar event in the modelled 
condition; it often refers to a 
model’s ability to prospectively 
identify treatments that are 
effective in humans.

Postdictive validity
The ability of a laboratory 
model to retrospectively 
demonstrate an established 
human phenomenon.

Forward translation
The process of using 
mechanistic discoveries  
from animal models to  
develop new treatments  
for the modelled human 
condition.

Contingency management
a learning- based treatment in 
which abstinence is maintained 
by providing non- drug rewards 
(monetary vouchers, prizes  
or other incentives, usually 
tangible/material and given 
promptly and predictably)  
in exchange for negative  
drug test results.

The community- 
reinforcement approach
a learning- based treatment 
developed for alcohol addiction 
in the 1970s, where the goal  
is to replace drug use with 
non- drug social rewards (family 
support and employment) 
contingent on decrease  
or cessation of drug use.
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caused weight loss and death within several weeks. 
In 1973, Yokel and Pickens46, using unlimited access 
to amphetamine derivates, showed similar emergence 
of binge- like behaviour in rats, with alternating peri-
ods of high drug intake and no drug intake. This was 
accompanied by weight loss and death within 2 weeks. 
Subsequent studies in monkeys and rats have replicated 
the pattern: binge- like self- administration of psychostim-
ulants but not opioids, causing death47–49. In 1998, 
Ahmed and Koob25 found escalation of cocaine intake 
in rats given extended access (6 h per day) but not limi-
ted access (1 h per day). This seminal study introduced 
the escalation model, which simulates a critical feature 
of human addiction, increased drug intake over time. 
Several other laboratories also developed a variation of 
the escalation model for oral alcohol intake based on 
non- contingent prolonged intermittent alcohol vapour 
exposure50.

At the behavioural level, the escalation of drug intake 
model does not look like loss of control, which would 
be characterized by binge- like infusions at irregu lar 
intervals51; instead, it is a decrease in the interinfusion 
interval, which remains relatively stable during the 
6-h or 12-h sessions. Escalation of drug intake could 
reflect an increase in the drug’s reinforcing effects or 
tolerance to its side effects that initially constrain rates 
of self- administration52. Across drug classes, escala-
tion results in an upward shift in the dose–response 
curve, increased motivation for the drug (assessed by 
the progressive ratio reinforcement schedule, in which the 
response requirements increase during the daily sessions 
until self- administration ceases)53, decreased punishment 
sensitivity54 and increased vulnerability to stress- induced 
reinstatement55.

Pharmacological studies using the escalation and 
alcohol vapour models indicate that escalation of 
drug intake (unlike limited- access, non- escalated 
intake) recruits stress- related neurotransmitter sys-
tems such as the corticotropin- releasing factor (CRF) 
and dynorphin/κ opioid systems56. For example, CRF 
receptor 1 (CRFR1) and κ opioid receptor (KOR) antag-
onists decrease escalated but not non- escalated drug 

intake50,56,57. The effects of CRFR1 and KOR antagonists 
are mediated through an effect on neurons in the ventral 
tegmental area (VTA)58 and nucleus accumbens (NAc) 
shell59, respectively. Other studies indicate a role of the 
central nucleus of the amygdala (CeA) in escalation of 
cocaine, oxycodone and alcohol self- administration. 
For instance, CeA injections of CRF antagonists, hypo-
cretin 1 receptor antagonist or the peptide nociceptin 
decrease alcohol, cocaine and oxycodone intake esca-
lation, respectively60–62. Molecular studies show that 
escalation of cocaine intake is controlled by the short 
non- coding RNA molecule miR-212 in dorsal striatum 
via homeostatic interactions with the epigenetic enzyme 
methyl- CpG- binding protein 2 (MECP2)63,64. Escalation 
of cocaine self- administration is also associated with 
unique brain neuroadaptations in expression of multi-
ple genes (for example, the genes encoding δ- catenin, 
microtubule- associated protein 1a, fibroblast growth 
factor receptor, Homer protein homologue 1b and c, 
NMDA receptor subunits)65,66. Escalation of cocaine 
intake is associated with tolerance to inhibition of the 
dopamine transporter by cocaine, resulting in reduced 
cocaine- induced dopamine overflow (assessed via 
microdialysis)67, and also with decreased phasic dopa-
mine release (assessed via voltammetry) in the NAc but 
not the dorsal striatum68 (Fig. 2).

Together, studies using the escalation model show that 
extended- access escalated intake is controlled by neuro-
pharmacological and molecular mechanisms distinct 
from those controlling limited- access, non- escalated 
intake. However, the translational utility of the model has 
yet to be established. For alcohol, the prolonged vapour 
exposure version of the escalation model shows post-
dictive validity for effects of the FDA- approved medica-
tions naltrexone and acamprosate: each of them decreases 
dependence- induced increased intake33. However, two 
major receptor targets derived from escalation studies  
— CRFR1 and KOR — have not yet shown clinical effi-
cacy69–73. By contrast, another ‘stress- related’ target — the 
glucocorticoid receptor74–76 — has shown translational 
promise: its blockade selectively suppressed escalated 
alcohol self- administration in rats77, and reduced both 

Binge self- administration
self- administration 
characterized by irregular 
(variable) interinfusion 
intervals, with alternating 
periods of high responding  
and no responding.

Progressive ratio 
reinforcement schedule
a schedule of reinforcement in 
which a reinforcer is presented 
only on the completion of a  
set number of responses. The 
number of required responses 
progressively increases after 
each presented reinforcement.

Punishment
a consequence that follows  
an operant response that 
decreases the likelihood  
that the response will occur  
in the future.

Table 1 | Forward translation and the traditional (single active lever) cocaine self- administration model

Potential treatment self- administration 
(rats or monkeys)

Human laboratory study (drug craving, 
subjective effects or choice)

clinical study (abstinence 
rate or drug relapse)

selected refs

Amphetamine Decrease Decrease Small- to- moderate effect 145,218,219,263

5- HT2C agonist lorcaserin Decrease No effect on cocaine choice, increased 
subjective effects of cocaine

No effect 264–267

Modafinil Decrease Decreased subjective effects, inconsistent 
effect on choice

No effect 268–271

Buspirone Decrease No effect on cocaine choice No effect 117,118,272,273

Cocaine vaccine Decrease Moderate effect No effect 274–276

D1 antagonists Decrease Increased cocaine choice, no effect on 
cocaine craving

Not tested 277–280

Olanzapine Decrease Not tested No effect 281–284

κ agonists Decrease Increased cocaine choice Not tested 285–287

Pioglitazone Decrease No effect Not tested 288–290
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cue- induced craving and short- term (1 week) alcohol 
consumption in a clinical study76 (Table 3).

Intermittent drug access. In 2012, building on work 
published in 2002 (ReF.78), Zimmer et al.79 developed the 
intermittent- access cocaine self- administration model 
to simulate the pattern of intake in human cocaine 
users who tend to self- administer cocaine intermitten-
tly within bouts (which are themselves intermit-
tently spaced), resulting in drug brain level spikes80. 
In this model, within a daily session, there are cycles 
of drug availability (typically 5 min on, 25 min off for  
6 h per day), generating peaks and troughs of daily drug 
exposure80,81. This contrasts with the escalation model, 
in which both drug intake and brain levels are relatively 
constant during sessions. In both models, drug intake 
increases over time, punishment sensitivity is reduced 
and resistance to extinction is increased compared with 
the limited- access model25,37,38,82,83. There are also neuro-
biological similarities: for cocaine, both intermittent 
access and escalation result in increased meta botropic 
glutamate receptor 2/3 (mGluR2/3) function in different 
brain regions84,85.

However, there are notable differences between 
the two models. Behaviourally, the escalation model 
produces higher daily cocaine intake when response 
requirements are low79,81. Intermittent access pro-
duces stronger motivation to seek and take cocaine, 
as assessed by the progressive ratio reinforcement 
schedule79, behavi oural economics86 and incubation of 
craving87 procedures. Neurobiologically, the two models 
have opposite effects on in vivo cocaine- induced extra-
cellular dopamine levels67,81 and ex vivo cocaine- induced 
dopamine transporter inhibition88 in the NAc: tolerance 
after escalation; sensitization after intermittent access.

More recently, the intermittent- access model was  
used to identify rats that are highly motivated to self-  
administer cocaine, methamphetamine and heroin44,89,90. 
Using this approach, James et al.86 showed a role for 
lateral hypothalamus orexin in these individual dif-
ferences (assessed by behavioural economics, progres-
sive ratio reinforcement schedule and reinstatement 
procedures) (Fig. 2).

Intermittent- access procedures have been produc-
tively combined with behavioural economics, the 
mathe matical application of microeconomic principles 
of consumption of commodities. In behavioural econo-
mics, behavioural data from operant self- administration 
procedures are analysed using three primary measures: 
Q0 (the maximum amount of consumption at the low-
est price, assessed under a continuous- reinforcement 
schedule, such that each lever press is reinforced), Pmax 
(the price that maintains maximal responding, assessed 
by the number of lever presses the laboratory animal is 
willing to perform to obtain the drug amount under Q0 
conditions) and α (an index of price elasticity of demand 
(demand elasticity), indicating the percent change in intake 
for a given percent change in ‘price’; that is, the response 
requirement to obtain an infusion)91. These measures rep-
resent the strength or value of a given reward, and can be 
directly compared across non- drug and drug rewards91.

Behavioural economics studies have shown that Pmax 
for cocaine (reflecting motivation to self- administer the 
drug) is higher after intermittent access than after limi-
ted or extended access (escalation)79. Aston- Jones and 
colleagues used behavioural economics measures to 
demonstrate a role of orexin in the lateral hypothalamus 
and its projection to the ventral pallidum in motivation 
to self- administer remifentanil92 and cocaine86 (Fig. 2). 
Behavioural economics was also used to examine sex 

Q0

a measure, in behavioural 
economics, of maximal 
consumption when the ‘price’ 
of a commodity is zero or at 
the lowest price possible (that 
is, FR1 reinforcement schedule 
in self- administration studies).

Pmax

a measure, in behavioural 
economics, of the maximum 
‘price’ that maintains maximal 
responding and represents the 
inflection point (that is, slope  
of −1) between inelastic and 
elastic demand (in other  
words, the price at which a 
proportional change in price 
results in an equal proportional 
change in consumption of  
the commodity).

α
a measure, in behavioural 
economics, of the elasticity of  
a demand curve or how quickly 
consumption of a commodity 
falls with increases in ‘price’ 
(response requirement  
divided by unit drug dose in 
self- administration studies).

Demand elasticity
in behavioural economics,  
how quickly demand falls  
with increases in ‘price’ 
(response requirements in 
self- administration studies).

Table 2 |  Forward translation and the reinstatement model

Potential treatment reinstatement (rats or 
monkeys)

Human laboratory study (drug 
craving, subjective effects or choice)

clinical study (abstinence 
rate or drug relapse)

selected 
refs

N- Acetylcysteine Cocaine priming

Discrete cue

Discriminative cue

Moderate effect Minimal effect 291,292

Cocaine vaccine Priming Moderate effect Minimal effect 274–276,293

CRFR1 antagonists Stress No effect Not tested 55,72

α1 antagonist Stress Moderate effect Weak effect 55,294,295

α2 agonists Stress

Discrete cue

Decrease Moderate effect as adjunct 
to opioid maintenance

55,296,297

mGluR2 agonists and 
positive allosteric 
modulators

Cocaine priming

Discrete cue

Context

Not tested No effect 298,299

Buspirone Discrete cue No effect No effect 118,273,300

5- HT2C agonist lorcaserin Cocaine priming

Discrete cue

No effect on cocaine choice, increased 
subjective effects

No effect 265–267

Pioglitazone Stress

Discrete cue

No effect Not tested 289,290,301

CRFR1, corticotropin- releasing factor receptor 1; mGluR2, metabotropic glutamate receptor 2.
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differences in drug self- administration93 and to evaluate 
new medications94.

Together, the findings show that intermittent access 
robustly increases motivation to seek and take opi-
oids and psychostimulants38. There are both simila rities 
and differences in brain responses to intermittent-  
access versus continuous- access (escalation) cocaine 
self- administration. Behavioural economics provides a 
unique tool to study behaviours across models. There are, 
however, no data on the extent to which these approaches 
have predictive validity for treatment development, and 
their postdictive validity has not yet been established.

Second- order reinforcement schedules. In the early 
1970s, Goldberg and colleagues showed that non- human 
primates will maintain high- rate operant respond-
ing for morphine-associated, cocaine-associated or 
amphetamine- associated cues under  second- order  
reinforcement schedules95,96. They proposed that these 
schedules model complex human drug seeking con-
trolled by drug- associated cues95. In the 1990s, Everitt 

and colleagues adapted the procedure to rats and showed 
that basolateral amygdala (BLA) lesions decrease acquisi-
tion of cocaine self- administration under a second- order 
schedule but not a fixed- ratio schedule97. On the basis  
of these and related data98, they proposed that circuits of 
cue-controlled drug seeking (measured by the first phase 
of a second- order schedule) are partly dissociable from 
circuits of drug taking (measured by the second phase 
of the sche dule or commonly used low-rate fixed- ratio 
schedules). Subsequent studies support this premise.

Under commonly used fixed- ratio schedules, cocaine 
taking increases extracellular dopamine levels in the 
NAc99. In contrast, cocaine given in second- order sched-
ules selectively increases dopamine levels in the dorsal 
striatum but not the NAc100,101. Studies using lesions 
and site- specific glutamate receptor antagonists show 
differential roles of NAc subregions in cue- controlled 
cocaine seeking (NAc core) versus cocaine taking (NAc 
shell)102. Lesions of the NAc core but not the NAc shell 
also decrease acquisition of heroin self- administration 
under a second- order schedule103. Di Ciano and Everitt104  
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Fig. 2 | Brain circuits that play a role in drug taking and drug seeking 
in different animal models. A horizontal artistic representation of a 
rodent brain is shown in the left panel. Each brain region and its label are 
depicted for the left hemisphere. Each brain region and/or projection 
involved in each animal model is depicted in the right panel. Grey circles 
represent a brain region critical for drug taking and drug seeking in each 
animal model. Arrows represent a projection from one brain region (grey 
circles) to another brain region (violet circles) critical for that animal model. 
AIC, anterior insular cortex; BLA, basolateral amygdala; CeL, lateral part of 

the central nucleus of the amygdala; CeM, medial part of the central 
nucleus of the amygdala; DLS, dorsolateral striatum; DMS, dorsomedial 
striatum; DR, dorsal raphe; DS, dorsal striatum; DSM, Diagnostic and 
Statistical Manual of Mental Disorders; LH, lateral hypothalamus;  
mPFC, medial prefrontal cortex; NAc, nucleus accumbens; NAcC,  
nucleus accumbens core; NAcS, nucleus accumbens shell; OFC, orbito-
frontal cortex; PAG, periaqueductal grey; PFC, prefrontal cortex; Pir,  
piriform cortex; VP, ventral pallidum; vSub, ventral subiculum; VTA, ventral 
tegmental area.

Second- order reinforcement 
schedules
Reinforcement schedules  
in which completion of the 
response requirements of one 
schedule (the unit schedule) is 
treated as a unitary response 
that is reinforced according  
to another schedule.
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used an anatomical disconnection procedure with glu-
tamate receptor antagonists to demonstrate that the 
BLA to NAc core projection is critical to cocaine seek-
ing but not cocaine taking. Di Ciano and Everitt105 
reported that pharmacological inactivation of the 
VTA decreases cocaine seeking but not cocaine taking  
(Fig. 2). The latter results are unexpected because of 
the known role of mesolimbic dopamine in cocaine 
self- administration under fixed- ratio schedules106.

Studies using food rewards have established that 
extended training under intermittent reinforcement 
schedules (including second- order schedules) causes 
habit- like (devaluation- insensitive) responding that 
depends on the dorsolateral striatum (DLS)107. On the 
basis of this premise, Everitt and colleagues studied 
the role of the DLS in second- order schedule respond-
ing reinforced by cocaine, heroin and alcohol after 
extended training108. Across drug classes, studies using 
lesions, reversible inactivation and dopamine receptor 
antagonists demonstrated a role for the DLS (but not 
the dorsomedial striatum)109–112. There is also evidence 
from anatomical disconnection procedures that tran-
sitions from goal- directed acquisition to habitual- like 
responding involve transfer of control of behaviour 
from the NAc core to the DLS, and from the BLA to the 
CeA113,114 (Fig. 2).

Together, the findings show that second- order sched-
ules can be used to study mechanisms of habit- like drug 
seeking after prolonged self- administration. The brain 
mechanisms controlling drug seeking and drug taking 
are partially dissociable. As with the escalation model, 
the translational utility of the second- order schedule 

model has yet to be established. For alcohol, the model 
has shown postdictive validity: naltrexone decreases 
alcohol- reinforced responding111. However, in rhesus 
monkeys, the model appeared to generate ‘false posi-
tives’ for buprenorphine, the weak stimulant modafini, 
and the anxiolytic buspirone (a 5- HT1A agonist), each 
of which decreased second- order cocaine- reinforced 
responding115–117 but were ineffective in multisite clini-
cal studies118–120 (Table 3). Finally, a main pharmaco-
logical target that emerged from research using the 
second- order schedule in rats — D3 dopamine receptor 
(DRD3) antagonism121,122 — has not advanced to addic-
tion treatment, despite many years of industry efforts123 
and promising results from other animal models124–126.

Drug and non- drug rewards. In 1940, Spragg127 gave 
chimpanzees choices between intramuscular morphine 
injections and fruit, and found that preference for mor-
phine over food was increased if the chimpanzees were 
non- contingently exposed to morphine and experienced 
withdrawal symptoms (box 1). This key finding has been 
reproduced in monkeys128,129 and rats130,131 with intrave-
nous heroin and fentanyl administration. In contrast, 
withdrawal from prolonged cocaine or methampheta-
mine administration (for example, short periods after 
extended- access cocaine or methamphetamine self- 
administration) had no effect on drug versus food choice 
in monkeys132,133 or rats134,135. This literature highlights 
differences between opioids and psychostimu lants, with 
withdrawal having a key role in modulating opioid choice 
(it is unknown whether withdrawal modulates alcohol 
or nicotine choice). Differences between these two drug 

Disconnection procedure
a procedure in which a role  
of a neuronal pathway or 
projection in a given behaviour 
is inferred when behaviour is 
disrupted by the contralateral, 
but not ipsilateral, inactivation 
of two anatomically connected 
brain regions.

Table 3 | Forward translation of the escalation, second- order schedule and choice models (selected examples and citations)

Potential treatment escalation/
extended 
access

second- order 
schedule

Drug choice 
(rats or 
monkeys)

Human laboratory study  
(drug craving, subjective 
effects or choice)

clinical study 
(abstinence rate or 
relapse)

selected 
refs

CRFR1 antagonist Decrease Not tested No effect No effect Not tested 56,71–73,302

Glucocorticoid 
antagonist

Decrease Not tested Not tested Decrease Decrease 76,77

κ antagonist Decrease Not tested No effect No effect Not tested 57,69,302,303

Amphetamine Decrease Decrease Decrease Moderate decrease Small- to- moderate effect 133,145,218,219, 

263,304,305

5- HT2C agonist 
lorcaserin

Not tested Not tested No effect No effect on choice, increased  
subjective effects

No effect 162,163,265,267

α2 agonists No effect Inconsistent 
effect

Moderate effect Decrease Moderate effect as adjunct 
to opioid maintenance

296,297,306–308

mGluR2/3 agonists Decrease No effect No effect Not tested No effect 299,309–311

Cocaine vaccine Not tested Not tested No effect No effect No effect 274–276,312

Aripiprazole Decrease Not tested No effect No effect or increased 
cocaine choice

No effect 313–317

Buspirone Not tested Decrease Increase No effect No effect 117,118,273,318

κ agonists Not tested Decrease Increase Increased cocaine choice Not tested 287,319,320

Bupropion Not tested No effect No effect No effect No effect 321–325

Modafinil Not tested Decrease Not tested Decrease cocaine choice No effect 116,120,268,269

Buprenorphine Decrease decrease Not tested Decrease cocaine choice No effect 115,119,326–328

Phendimetrazine Decrease Not tested Decrease No effect Not tested 329–331

Lisdexamfetamine Not tested Not tested Decrease Not tested No effect 332,333

CRFR1, corticotropin- releasing factor receptor 1; mGluR2/3, metabotropic glutamate receptor 2/3.

www.nature.com/nrn

R e v i e w s



classes are also evident when rats choose between heroin 
and cocaine in different environments49,136: heroin pre-
ference is higher in home environments, while cocaine 
preference is higher in novel environments136,137.

From the 1980s onwards, choice studies have led to 
important insights. At the behavioural level, there have 
been two key observations. First, drug choice is relatively 
independent of rates of drug self- administration (for 
example, number of drug injections per session) in both 
monkeys138 and rats131. Second, drug choice is sensitive to 
manipulations that alter the relative cost (that is, response 
requirement)139, reward (food or drug) magnitude134,139, 
prechoice drug exposure and reward availability140, 
and delay of the food reward44,141,142, and more recently 
it was unexpectedly observed that identical delay of 
both cocaine reward and food reward shifts the choice 
towards cocaine143. Overall, concurrent availability of a 
non- drug reward during a drug self- administration ses-
sion strongly decreases the drug- rewarding effects44,131. 
These results are consistent with both human labora-
tory studies of self- administration144,145 and the clinical 
efficacy of contingency management146.

The translational promise of choice models has pri-
marily led to their use in evaluating candidate medica-
tions (Table 3) and more recently to several studies on 
neurocircuitry36. Guillem and Ahmed147,148 showed that 
distinct orbitofrontal cortex (OFC) neurons are acti-
vated during choices for food versus cocaine or heroin. 
These results agree with those from non- choice studies 
showing that distinct medial prefrontal cortex (mPFC) 
and NAc neuronal ensembles encode seeking of food 
versus drugs (cocaine or alcohol)149–153. Augier et al.154 
used discrete, mutually exclusive choice between alco-
hol versus saccharin142 to identify an alcohol- preferring 

subpopulation among genetically heterogenous rats. 
They demonstrated that impaired GABA clearance in 
the CeA is critical for alcohol choice (Fig. 2).

On the basis of the literature on the inhibitory effects 
of other non- drug rewards (for example, enriched 
environment, exercise and social interaction) on drug 
preference (CPP model), self- administration and rein-
statement/relapse155–160, we recently developed a varia-
tion of a choice model142 to study drug reward (with 
methamphetamine or heroin) versus rewarding social 
interaction44.

Together, drug- choice models are conceptually 
appealing because they can mimic a cardinal feature of 
human addiction: preference for drugs over non- drug 
rewards. At the behavioural level, choice models have 
prospective predictive validity: drug- choice studies 
were among the inspirations for contingency manage-
ment treatment161. Choice models also have postdictive 
validity for treatment: methadone and buprenorphine 
decrease opioid withdrawal- induced increased heroin 
preference in rhesus monkeys36,129 (Fig. 3). In monkeys, 
choice models can help weed out ‘false- positive’ poten-
tial treatments that appear effective in studies using 
traditional drug self- administration or reinstatement 
but fail to affect human choice (for example, the 5- HT2C 
agonist lorcaserin)162,163 (Table 3). A potential reason for 
the higher sensitivity of the model is that unlike tradi-
tional single- operandum drug self- administration and 
relapse/reinstatement models, the dependent measure 
(choice allocation) is rate independent and thus rela-
tively uncompromised by non- specific rate- decreasing 
effects of test medications. However, for two potential 
medications (the psychostimulants phendimetrazine 
and lisdexamfetamine (Vyvanse), prodrugs of phenme-
trazine and dextroamphetamine) positive results in the 
monkey choice model did not predict clinical efficacy 
(Table 3). Finally, the circuits underlying drug choice are 
largely unknown, because for unknown historical rea-
sons, choice models have rarely been used by addiction 
neuroscientists. We hope that the recent circuit studies 
described above147,148,154 and the translational utility of 
the choice models will change this state of affairs.

Adverse consequences of drug seeking. Another cardinal 
feature of human addiction is persistent drug use despite 
adverse consequences, often referred to as ‘compulsi-
vity’164. This has been studied in animal models using 
two main types of punishment: foot shock for intra-
venous (or oral) drug self- administration, or the bitter 
taste of quinine for oral drug self- administration37,165,166. 
Other punishments have included intravenous hista-
mine adminstration167 or presentation of cues previously 
paired with shock168. Punishments have been incorpo-
rated into second- order seeking–taking tasks (see above) 
such that only the seeking response is punished54, and 
into choice procedures169,170. Relapse to drug seeking has 
been studied with punishment procedures171 and with a 
related electric barrier conflict procedure172 where rats 
must cross an electrified grid floor to press a lever for 
drug infusions173–176.

In mechanistic studies of punished drug self-  
administration, investigators typically choose a shock 

Box 1 | The place of non- human primates in addiction research

since the 1940s127, non- human primates have been used to elucidate behavioural  
and pharmacological mechanisms of drug addiction. this research has improved our 
understanding of both trait and state variables in addiction and has been invaluable in 
evaluating candidate therapeutics36. there are three specific areas in addiction research 
where the use of non- human primates may be indispensable.

First, non- human primates develop complex and sex- differentiated social hierarchies 
that affect both brain function and addiction vulnerability. For example, dominant male 
monkeys are less prone to cocaine self- administration than subordinate males, and this 
protective effect is associated with increased striatal D2 dopamine receptor (DrD2)/D3 
dopamine receptor (DrD3) availability335. in contrast, dominant female monkeys are more 
prone to cocaine self- administration than subordinate females, and this vulnerability is 
also associated with increased striatal DrD2/DrD3 availability336.

second, the long lifespan of non- human primates affords opportunities to investigate 
consequences of prolonged drug self- administration and abstinence both within and 
across multiple life stages (adolescence, adulthood and senescence). For example, in a 
cohort of 12 rhesus monkeys, baseline availability of striatal DrD2/DrD3 was negatively 
correlated with cocaine self- administration, and in some of the monkeys, long- term 
reductions in DrD2/DrD3 availability were present after 1 year of abstinence337.

Finally, the ongoing opioid crisis has highlighted the need to increase available 
treatment options and improve matching of treatments to patients42. the degree of 
opioid dependence is a critical factor in treatment selection. to date, the only animal 
model that addresses this need is a non- human primate heroin- choice model of opioid 
dependence and withdrawal that has shown sensitivity to opioid agonists versus other 
clinically used medications (for example, clonidine) that only decrease somatic symptoms 
of withdrawal36,302 (Fig. 3). the non- human primate choice model is also uniquely sensitive 
to identify ‘false- negative’ potential medications identified in traditional drug 
self- administration and reinstatement models (Tables 1,2).
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intensity level (or quinine concentration) under 
which some rats are punishment resistant (continuing 
drug self- administration), while others are punish-
ment sensitive37,164. Physiological measurements aim 
to identify differences between the two phenotypes, 
and experimental manipulations (lesions, pharma-
cological agents and chemogenetic or optogenetic  
activation/inhibition) aim to change them164,177–179. 
Punishment studies have identified a role for forebrain 
serotonin and 5- HT2C receptors180 and decreased activity 
in the mPFC (prelimbic area) in punishment- resistant 
cocaine self- administration177. These results, how-
ever, were not replicated in another study using brain 
lesions181.

There is also evidence for a role of the dorsal stri-
atum and BLA in punishment- resistant cocaine self-  
administration181,182. Studies using home- cage alcohol 
intake or operant alcohol self- administration showed 
a role for anterior insular cortex (AIC)- to- NAc core 
projections and NAc core GRIN2C- containing NMDA 
receptors179,183, mPFC to dorsal periaqueductal grey pro-
jections178 and BLA GABAergic transmission154. These 
mechanisms were not engaged during non- punished 
drug self- administration154,177–179,181,182. Finally, Pascoli 
et al.184,185 showed that punishment- resistant optogenetic 
self- stimulation of VTA dopamine neurons is dependent 
on synaptic plasticity changes in the OFC and its projec-
tions to the dorsal striatum (Fig. 2). However, OFC inac-
tivation has no effect on punishment- resistant cocaine 
self- administration181; thus, the relevance of that find-
ing to punishment- resistant drug self- administration is 
unknown.

In studies of mechanisms of relapse after cessa-
tion of drug intake caused by adverse consequences, 
rats are trained to self- administer a drug and are then 
exposed to intermittent punishment or electric bar-
rier of increasing shock intensities over days until they 
‘voluntarily’ abstain. During drug- free relapse tests, 
rats are exposed to drug priming, drug cues or drug 
contexts in the presence175 or absence173,174,186 of foot 
shock. Circuit studies have identified roles for the late-
ral hypothalamus, NAc core and shell, ventral subic-
ulum and its projections to the NAc shell, and AIC 
in context- induced relapse to alcohol seeking after 
punishment- induced abstinence171,187–189, and for the 
ventral pallidum in context- induced relapse to cocaine 
seeking after punishment190. In cocaine- trained rats, 
reversible inactivation of the BLA and CeA poten-
tiates context- induced relapse to cocaine seeking after 
punishment- induced abstinence; the same manipula-
tions decreased context- induced reinstatement after 
extinction191, assessed by the aba renewal procedure192. 
Thus, amygdala activity can either promote or inhibit 
relapse depending on the method used to achieve absti-
nence. Finally, using the electric barrier model, Saunders 
et al.193 showed that cue- induced relapse in the pres-
ence of the barrier occurs primarily in rats classified 
as sign tracking and that this effect is mediated by NAc 
core dopamine (Fig. 2).

Together, findings from punishment studies identi-
fied brain mechanisms that are largely distinct from 
those controlling drug taking and drug seeking with-
out adverse consequences37; this includes a recent 
demonstration of opposite roles of amygdala activity 

Opioid maintenance 
therapy
Pharmacological treatment 
method in which long- acting 
opioid agonists such as 
methadone or buprenorphine 
are administered orally or via 
depot formulation, producing 
few or no acute subjective 
effects in tolerant patients  
but reducing craving for,  
and use of, other opioids.

ABA renewal
The resumption of a 
conditioned response in the 
original training context after 
extinction in a different context 
(also called ‘context- induced 
reinstatement’).

Sign tracking
behaviour directed towards  
a stimulus as a result of a 
learned association between 
the stimulus and the reward. 
sign- tracking responses 
develop even though reward 
delivery is not contingent  
on a response.
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Fig. 3 | effect of heroin withdrawal and buprenorphine or methadone maintenance on drug choice in rhesus 
monkeys. The percent heroin choice under a heroin self- administration regimen in dependent (orange line) and non- 
 dependent (blue line) monkeys is shown in the left panel. Opioid dependence was achieved by introduction of an additional 
daily 21- h supplemental heroin self- administration session in addition to the 2- h heroin- choice session. Opioid withdrawal 
was achieved by suspension of the 21- h supplemental heroin self- administration session for 1 day and was confirmed by 
scoring somatic behavioural withdrawal signs at various time points over the 22- h opioid withdrawal period. Experimental 
details and the time course of opioid withdrawal on heroin choice and somatic behavioural withdrawal signs are reported  
in ReF.129. At low unit dose of self- administered heroin (x axis), monkeys in both conditions prefer food over heroin (y axis). 
Preference switches to heroin as the unit dose of self- administered heroin was increased. The percent heroin choice when 
heroin self- administration is interrupted in dependent monkeys to induce withdrawal (orange line) is shown in the right 
panel. Preference for heroin (x axis) is already higher in dependent monkeys than in non- dependent monkeys (blue line)  
at low unit doses of self- administered heroin. Preference for food can be restored to the previously non- dependent levels 
via ‘opioid maintenance therapy’ with prolonged administration of either buprenorphine or methadone (black arrow). 
Preference scale: food (0%) or heroin (100%). The dashed line represents the indifference point. The x axis represents heroin 
self-administration doses and can be generalized to prescription opioids such as fentanyl and oxycodone. See ReF.334.
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in relapse after punishment- induced abstinence versus 
extinction- induced abstinence194. A question for future 
research is whether punishment resistance is correlated 
with increased drug choice. This has been shown for 
alcohol with saccharin as the alternative reward154, but 
not for methamphetamine with social interaction as 
the alternative reward44. As with the intermittent drug 
access model, the translational utility of the punish-
ment model has yet to be established. However, recent 
studies suggest that the model has postdictive validity. 
The MOR antagonist GSK1521498 decreases previously 
punished seeking responses in the rat model195 and 
self- reported responses to alcohol infusions in social 
drinkers196. Additionally, the GABAB receptor agonist 
baclofen, which decreases heavy drinking in humans197, 
was subsequently shown to decrease quinine- resistant 
home- cage alcohol drinking in rats198.

DSM- IV- based individual differences model. Across 
drug classes, ~20% of recreational drug users progress to 
addiction as defined by the DSM (currently in the fifth 
edition)199. In animal models, transition to ‘addiction’ 
has traditionally been studied using long- term home- 
cage procedures for oral self- administration of alcohol or 
opioid solutions166,200 and with unlimited- access intrave-
nous cocaine self- administration that causes binge- like 
responding51,78. These studies have shown how the tran-
sition can be modulated by environmental conditions 
(drug exposure duration, dose and housing conditions) 
and by individual characteristics such as place in the 
social hierarchy166. Expanding on this historical back-
ground, Deroche- Gamonet et al.201 in 2004 introduced a 
rodent model of cocaine addiction that formally adapted 
the DSM- IV criteria used in humans.

They trained rats over 3 months to self- administer 
cocaine for three daily 40- min sessions separated by 
15- min off periods. They repeatedly evaluated three 
behaviours on the basis of the DSM- IV criteria: per-
sistent drug seeking during periods of drug unavail-
ability (responding during the 15- min off periods), 
high motivation to self- administer cocaine (progres-
sive ratio responding) and willingness to take the drug 
despite adverse consequences (foot shock punishment). 
They calculated an ‘addiction’ score (scale 0–3) based 
on the subjects’ percentile in each measure’s distribu-
tion. They reported that that only ~20% of the rats met 
all three ‘addiction’ criteria and these rats showed high 
relapse vulnerability (that is, reinstatement induced by 
cues or cocaine priming injections). A follow- up study 
showed that impulsivity predicted the development of 
addiction- like behaviour202, and a recent study showed 
that the findings generalize to methamphetamine44.

In mechanistic studies of the DSM- IV model, 
Kasanetz et al.203 measured NMDA- dependent long- term 
depression in the NAc after short- term (17 days) and 
prolonged (50–72 days) cocaine self- administration. 
In ‘non- addict’ rats, the initial impairment in long- term 
depression recovered over time, while in ‘addict’ rats 
(score of 3), it did not. Kasanetz et al.204 also showed 
that the ‘addict’ rats had a selective impairment of 
mGluR2/3- mediated long- term depression in the 
mPFC, along with increased local AMPA/NMDA 

ratio, a measure of synaptic strength. In a follow- up 
study, Cannella et al.205 showed that ‘addict’ rats had 
greater cue- induced reinstatement and that this effect 
was decreased by LY379268 (an mGluR2/3 agonist). 
However, the inhibitory effect of LY379268 was also 
observed in ‘non- addict’ rats. Bock et al.206 reported 
that synaptic plasticity in NAc D2 dopamine receptor 
(DRD2)- expressing medium spine neurons contributes 
to vulnerability/resilience to cocaine taking and seeking 
in a mouse version of the DSM- IV model. Most recently, 
using a variation of the ‘individual differences’ approach 
based on an intermittent- access drug self- administration 
model79, O’Neal et al.90 showed that in heroin- trained 
‘addiction- vulnerable’ rats, cue- induced reinstatement  
(but not progressive ratio responding) is bidirec-
tionally modulated via the direct and indirect striatal 
pathways (Fig. 2).

Together, findings from the DSM- IV model have a 
significant conceptual impact207, but have led to very few 
follow- up brain mechanism studies. At present, neither 
the postdictive validity nor the translational utility (pre-
dictive validity) of the model has been established, and 
the results from a single pharmacological study with 
LY379268 confirm those from studies on the efficacy of 
mGluR2/3 agonists on relapse in rat models208.

In summary, from a mechanistic perspective, 
the major conceptual advance from studies using the 
addiction- related models described here has been 
the dissociation of circuits controlling traditional 
limited- access drug self- administration (and drug 
CPP) from those that control arguably more complex 
behaviours, such as extended- access escalation of drug 
self- administration, cue- controlled responding under 
second- order schedules and drug self- administration 
despite adverse consequences. The studies reviewed 
also show that different brain areas and circuits con-
trol behaviour in the different models (Fig. 2). Much 
less is known about the circuit mechanisms of drug 
choice, and about the ‘addicted’ phenotype in DSM- IV 
models. It is also largely unknown whether these more 
human- relevant models have greater predictive or post-
dictive validity than those that preceded them. The 
models have shown good postdictive validity, but, as we 
noted, have not yet led to approval or dissemination of 
new treatments (predictive validity). One exception is the 
choice model, whose results partially inspired the devel-
opment of contingency management, a highly effective 
behavioural treatment for most forms of addiction161.  
This model also proved useful in detecting ‘false- positive’ 
medications identified in traditional single- lever drug 
self- administration and reinstatement models that were 
ineffective in human studies (Tables 1,3).

The reverse translational approach
Contingency management is one of the success stories 
in addiction treatment (other successes include opioid 
agonist maintenance and the community- reinforcement 
approach) that have led our group to take a ‘reverse trans-
lational’ approach to animal models. For many years, we 
and others have used the rat reinstatement model to 
identify unique and shared mechanisms of reinstate-
ment induced by drug priming, stress and drug cues and 
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contexts209. However, the clinical studies whose goal was 
to ‘forward translate’ findings from the reinstatement 
model have had, at best, limited success (Table 1). Now, 
through reverse translation of successful human treat-
ments, we aim to clarify their mechanisms and action 
and identify new treatments. We first describe an animal 
model of opioid maintenance210,211 that we recently used to 
test a new class of MOR agonists that might complement 
methadone and buprenorphine. Next, we describe our 
models of contingency management161 and the community-  
reinforcement approach212, which we have used to  
identify brain mechanisms of relapse after treatment.

Opioid maintenance treatment model. Opioid main-
tenance can be modelled in rats using osmotic mini-
pumps that provide relatively invariant drug levels 
and mimic the slow kinetics of clinical regimens.  
We and others studied the effect of maintenance with 
heroin213, methadone32 or buprenorphine31 (via mini-
pumps implanted after self- administration of heroin or 
heroin plus cocaine) on reinstatement after extinction. 
Opioid maintenance decreased reinstatement induced 
by drug priming but not foot shock stress. In one study31, 
buprenorphine maintenance also decreased extinction 
responding before reinstatement testing.

Recently42, we combined the opioid maintenance 
model with a modification of the context- induced 
reinstatement model192,214 to compare the efficacy of 
buprenorphine with that of the putatively g- protein- 
biased MoR agonist TRV130 (ReF.215) (see ReF.216 for 
an alternative account of the improved safety pro-
file of putative MOR- biased agonists). Minipumps 
were implanted after oxycodone self- administration 
training (FR1 reinforcement schedule, 20- s time out; 
6 h per day for 14 days), and the effect of buprenor-
phine and TRV130 maintenance was tested on three 
relapse- related measures: extinction responding, 
context- induced reinstatement and reacquisition of 
oxycodone self- administration. In male rats, buprenor-
phine and TRV130 decreased extinction responding and 
reacquisition but had a weaker effect on context- induced 
reinstatement. In female rats, buprenorphine decreased 
responding on all three measures, while TRV130 
decreased only extinction responding. Because of their 
lower liability to produce respiratory depression, the 
clinical implication is that G- protein- biased MOR ago-
nists, currently in development as analgesics217, should 
be considered as maintenance medications, although 
they might be more effective for men than women.

Reverse translation of agonist- based maintenance 
treatment is also applicable to cocaine. A study at 
the beginning of this century showed that ampheta-
mine maintenance decreases human cocaine use218. 
Subsequent studies in monkeys and rats showed that 
prolonged amphetamine delivery decreases cocaine 
self- administration and choice219,220. These findings 
provide a framework through which an agonist- based 
maintenance- like model can be used in laboratory ani-
mals to identify novel, long- acting dopamine mimics 
(full or partial agonists at receptors, or blockers or sub-
strates at transporters) for treatment of psychostimulant 
addiction221.

Contingency management model. In humans, abstinence 
is often chosen in order to retain or obtain access to non- 
drug rewards28. This general principle is made concrete 
and systematic in contingency management, a behav-
ioural treatment in which small prizes or monetary 
vouchers can maintain abstinence for many months146. 
In 2015, on the basis of previous work using food versus 
drug choice23,36 (see above), our group43 developed a rat 
model to study incubation of methamphetamine crav-
ing and relapse after voluntary abstinence. Our objective 
was to model craving and relapse after discontinuation 
of contingency management.

In this model, food- sated rats are trained to self-  
administer pellets of palatable food for 6 days and then 
to self- administer methamphetamine for 12 days. Next, 
relapse to drug seeking is tested twice — after 1 and  
21 days of abstinence. Between tests, rats undergo volun-
tary abstinence (achieved via a discrete- choice procedure 
between drug and palatable food). In the first study43, 
we showed robust incubation of methamphetamine 
craving in male rats after choice- induced abstinence, 
an effect decreased by systemic injection of the mGluR2 
agonist AZD8529. These data extend previous findings 
on the efficacy of mGluR2/3 agonists on relapse in rat 
models208. However, AZD8529 appears to have a more 
favourable profile than the classic mGluR2/3 agonist 
LY379268 for translation to human relapse prevention:  
it is more selective on the mGluR2 subtype, has better 
bioavailability and does not produce tolerance222. In 
the second study223, we extended the incubation find-
ings (for methamphetamine craving after food choice-  
induced abstinence) to female rats. We also showed that, 
for heroin, choice- induced abstinence prevented incu-
bation in both sexes. The clinical implications of these 
findings are unknown. Contingency management is 
thought to be similarly efficacious across drug classes146, 
but if it had a greater effect on incubation for opioids 
than for psychostimulants, this difference would be dif-
ficult to detect in humans without a specialized study  
design224.

We recently used this model to study brain mecha-
nisms of relapse and craving after choice- induced 
abstinence. Using the Daun02 inactivation procedure225, 
we found that incubation of methamphetamine 
craving requires activation of dorsomedial striatum 
neuronal ensembles226. Using a similar behavioural 
procedure combined with D1 dopamine receptor 
(DRD1) and DRD2 antagonists, Rossi et al.227 demon-
strated that incubation also involves the NAc core 
but not the shell. Using multiple methods, includ-
ing projection- specific chemogenetic inhibition, we 
found that relapse to methamphetamine seeking after 
choice- induced abstinence requires AIC- to- CeA glu-
tamatergic projections228. Most recently, we used a 
disconnection procedure to demonstrate that relapse 
to fentanyl seeking after choice- induced abstinence 
requires projections between the piriform cortex and the  
OFC229 (Fig. 2).

The community- reinforcement approach model. In the 
studies just described, ‘choice- induced voluntary absti-
nence’ refers to a choice between a drug and palatable 

Reverse translation
The use of data from humans 
(for example, that a treatment 
is effective for a condition) to 
develop animal models whose 
goals are to uncover underlying 
mechanisms and identify new 
treatments.

G- protein- biased MOR 
agonist
an agonist of µ opioid receptor 
(MoR) that preferentially 
activates the g- protein- coupled 
intracellular pathway over  
the β- arrestin pathway.

Daun02 inactivation 
procedure
a pharmacogenetic lesion 
approach (conversion  
of Daun02 into cytotoxic 
daunorubicin by 
β- galactosidase) to  
determine the behavioural 
relevance of Fos- expressing 
neuronal ensembles in 
FOS–lacZ rats that express 
Fos and β- galactosidase  
in activated neurons.
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food. The exclusive use of food as the non- drug reward 
(in our studies and most others) may limit translation, 
because in most humans, the rewards that compete 
with drugs are primarily social (for example, family, 
friends and employment)230. Since the early 1970s, this 
knowledge has been incorporated into the community- 
reinforcement approach, which harnesses operant 
principles by increasing volitional contact with social 
reinforcers such as support groups and positive work 
environments212,231.

Similar principles underlie our recently developed 
operant model of choice between drugs and reward-
ing social interaction in rats44. This model was also 
inspired in part by studies in laboratory monkeys, dat-
ing to the early 1960s, in which social interaction was 
chosen over food232. In our rat model44,233, the avail-
ability of a social- reward choice eliminated drug self-  
administration, even in rats that met ‘addiction’ criteria201,  
under diverse conditions that included social hous-
ing between the choice sessions. Furthermore, after 
intermittent- access drug self- administration79, the rats’ 
addiction scores did not predict their liability to shift 
from social to methamphetamine preference when 
social interaction was delayed or punished. Another 
unexpected finding was that abstinence induced by 
social choice modestly decreased incubation of her-
oin craving234 and completely prevented incubation of 
methamphetamine craving44.

We have begun to study the neurocircuitry under-
lying social reward prevention of incubation. It involves 
the lateral part of the CeA protein kinase Cδ (PKCδ)-  
expressing neurons44 (which inhibit the medial part 
of the CeA output neurons controlling appetitive and 
aversive behaviours235). We first demonstrated this 
with double- labelling immunohistochemistry of FOS 
plus PKCδ44. We then developed an adeno- associated 
virus- based short hairpin RNA to inhibit PKCδ 
expression, and showed that knocking down the enzyme 
in the lateral part of the CeA reverses the prevention 
of incubation236 (Fig. 2). Using similar methods, we also 
showed a role for the lateral part of the CeA somatostatin-  
expressing neurons in the classic incubation of craving 
after home- cage forced abstinence44,236.

In summary, we described treatment- based reverse 
translational approaches whose goal is to mimic success-
ful addiction treatments. We propose that these reverse- 
translated ‘treatment’ models provide an ecologically 
relevant platform from which we can improve forward 
translation using different methods to discover new 
relapse- related circuits and to identify new medications 
(for example, G- protein- biased MOR agonists) for 
relapse prevention in ‘treated’ or post-‘treated’ labo-
ratory animals. An unexpected finding from our choice- 
induced voluntary abstinence models is the drug- specific 
effects of the food versus social interaction mani-
pulations: food choice prevents the emergence of incu-
bation of heroin craving but not methamphetamine 
craving, while social choice prevents the emergence 
of incubation of methamphetamine craving but has 
a modest effect on incubation of heroin craving44,223.  
The mechanistic basis for this dissociation is a subject 
for future research. Finally, for a brief discussion of 

the reverse translational treatment approach within the 
con text of endophenotype-based approaches to animal 
models of psychiatric disorders237–239, see Supplementary  
Box 1.

Implications for human addiction
Pharmacological treatments. Reverse translation builds 
on interventions with established clinical efficacy, ulti-
mately evidenced by regulatory approval. Few addiction 
pharmacotherapies fit this bill, but some do, and these 
offer a starting point. Approval of medications requires 
‘meaningful clinical benefit’; for addiction (except 
alcoholism), this is defined by the FDA and European 
Medicines Agency as sustained abstinence240. Draft guid-
ance from the FDA suggests — appropriately — that 
benefit could be recognized in “patterns” other than com-
plete abstinence241. Until such guidance is implemented, 
we cannot be confident that approval will be granted for a 
medication that, for example, partially shifts choice allo-
cation towards non- drug rewards (Fig. 3). Nevertheless, 
non- abstinence outcomes may offer biomarkers for 
early- stage development242.

The prototype for reverse translation should prob-
ably be methadone, which retains patients in treatment 
and promotes abstinence from other opioids with effect 
sizes among the largest in medicine (number needed to 
treat of 2 or less)21. When use of methadone is accom-
panied by behavioural treatments, outcomes are even 
better243. Of note, many patients taking methadone show 
substantial functional improvement without complete 
abstinence from other opioids244. Reverse translation 
can accommodate that reality: in rats, as in humans, 
suppression of opioid intake and relapse by agonist 
maintenance is not uniform32,42, a finding that seems 
important to explain.

Heterogeneity in response to methadone mainte-
nance, in patients or laboratory animals, underscores 
the fact that we do not fully understand how metha-
done maintenance works. Clinically, two mechanisms 
are thought to be important, both enabled by metha-
done’s slow elimination and its associated sustained 
MOR activation. First, methadone dampens craving for 
other opioids without inducing intoxication. Second, 
by gradually inducing tolerance, methadone — at suffi-
cient doses — decreases the rewarding effects of short-  
acting opioids245. (This ‘blockade’ is rarely complete; 
patients can top up.) The relative contributions of these 
two mechanisms vary between and within patients, 
adding often unrecognized complexity to methadone’s  
actions.

Buprenorphine, a long- acting high- affinity par-
tial MOR agonist (with KOR antagonistic effects of 
unknown clinical relevance), highlights some of these 
complexities. At sufficient doses, its treatment efficacy 
is similar to that of methadone246. Because it is a partial 
agonist, its ability to suppress craving is inferior to meth-
adone’s and requires MOR occupancy greater than 70% 
(ReF.247). However, because of its high affinity and limi-
ted intrinsic MOR activity248, buprenorphine becomes 
a potent antagonist in the presence of other opioids, 
blocking their short- term rewarding effects and pro-
moting abstinence at doses lower than those required 

Endophenotype
also known as intermediate 
phenotype, a quantitative  
trait unseen by the unaided 
eye, located along the pathway 
between a genomic locus  
that contributes to the 
heritability of a complex 
disease phenotype and  
the disease itself.
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to suppress craving. This dichotomy has been elegantly 
borne out by studies of depot buprenorphine249,250.

Reverse translation of these clinical realities, with 
accompanying mechanistic work, should be relevant 
to more than opioid addiction. We recognize major 
differences in addiction across drug classes49, but opi-
oid addiction is not the only one treatable by agonist 
maintenance. Although effect sizes are lower (number 
needed to treat of 29 (ReF.251)), nicotine addiction can be 
treated with nicotine replacement therapy, a full- agonist 
approach that emulates the slow kinetics of methadone. 
The high- affinity partial α4β2 nicotinic agonist vareni-
cline has similar clinical efficacy252. Agonist approaches 
might also work for alcohol addiction, although the 
complexity of this condition is greater, because alco-
hol does not act through a single molecular target33. 
However, through its actions at GABAB and extrasyn-
aptic GABAA receptors, sodium oxybate is a partial 
alcohol mimetic. Recent data support its efficacy253. 
Additionally, as mentioned already, the GABAB receptor 
agonist baclofen (a potential alcohol mimetic), decreases 
heavy drinking in humans197 and was recently shown 
to decrease quinine- resistant (compulsive) home- cage 
alcohol drinking in rats198. In cannabis- dependent men, 
cannabis use is markedly reduced by PF-04457845  
(a fatty acid amide hydrolase (FAAH) inhibitor)254. 
FAAH selectively degrades anandamide (an endoge-
nous partial agonist at CB1 receptors) and PF-04457845 
increases its plasma levels about tenfold255. This can be 
conceptualized as an indirect agonist maintenance treat-
ment for cannabis addiction. Finally, as discussed in the 
section entitled “The reverse translational approach”, 
principles of agonist maintenance treatment can also 
be applied to reverse translational studies aimed at 
identifying novel treatments for cocaine addiction145.

The clinical data discussed above can inform reverse 
translation by pointing to the fact that, across drug 
classes, ‘clinically meaningful benefits are achieved with 
medications that share two characteristics: they activate, 
to various degrees, the neurochemical targets of the 
addictive drug, and they stabilize the activity of those 
systems to avoid excessive highs and lows. High- affinity, 
low- efficacy partial agonists such as buprenorphine (and 
potentially the new generation of MOR agonists216) addi-
tionally block the rewarding effects of shorter- acting 
addictive drugs.

Finally, recent studies show that a single ketamine 
infusion, combined with behavioural treatments, 
decreases craving and relapse risk in cocaine and alcohol  
users256,257. If this finding can be reverse translated, for 
example, by demonstrating that acute administration 
of ketamine decre ases incubation of psychostimulant 
craving after food choice- induced abstinence (contin-
gency management), this could provide an experimen-
tal setup to test novel ketamine- like compounds with 
a more favourable risk–benefit ratio and identify brain 
mechanisms of ketamine’s protective effect.

Psychological treatments. Developing new psychother-
apeutic treatments will rarely require animal models. 
Psychotherapeutic treatments are often based on infor-
mation conveyed through language and then processed 

abstractly by the patient/client; some of those processes 
may be difficult to mimic or measure in laboratory 
animals258. It will usually be more expedient to develop 
psychotherapies directly in the target population — 
humans — in accordance with systematic guidelines for 
formative research259.

But medications and other biomedical treatments 
(and perhaps some behavioural treatments that act 
chiefly through classical or operant conditioning) can 
and should be screened in animal models that account 
for how drugs are used in a psychosocial milieu. 
Support for this point can be seen in findings from our  
social- choice model: rats uniformly chose social inter-
action with a peer rather than drugs (unless social 
interaction was devalued by delay or punishment of 
the social interaction)233. The strength of that finding 
was puzzling and surprising to many neuroscientists, 
including us. Many clinicians and drug- policy thought 
leaders were less impressed; a representative response 
(via Twitter) was “NIDA needed to do a rat study to 
discover something that social scientists have known 
about humans for essentially forever” (that is, that social 
bonds can protect against addiction). The heuristic 
value of our finding was audience dependent, but the 
practical value is not.

The logical testing ground for biomedical treatments 
is the subset of laboratory animals whose preference for 
drugs is most inelastic to the availability of non- drug 
alternatives, social or otherwise. They might represent 
the subset of patients who need such treatments  
(Fig. 4). The challenge is to identify those laboratory 
animals. We do not yet know which (if any) parametric 
varia tions can do that, and we cannot find out without 
assessing predictive validity. That requires iterative, 
bidirectional translation with a human interventional 
component, an inherently slow process. This is a reason 
to start soon.

Concluding remarks
Addiction is a complex and multifaceted psychiatric 
disorder whose progression and treatment outcomes 
are dependent on the drug user’s social and economic 
environment, government policies and laws, and 
human- specific cognitive and language- related pro-
cesses258,260. Animal models, as sophisticated as they 
have evolved to be over the years, can mimic only some 
features of this complex human condition. In general, 
we argue that a more nearly complete understanding 
of the multiple brain mechanisms of addiction will 
come from the use of multiple models of the different 
phases of addiction (Fig. 1) and the realization that terms 
such as ‘brain reward/addiction circuit(s)’ or ‘addiction 
genes’ are not heuristically useful. This is because diffe-
rent and often dissociable molecules and brain circuits 
control drug taking and drug seeking in the different 
animal models (Fig. 2), and, as discussed elsewhere, 
these mechanisms are also often dissociable across drug 
classes49,261.

Our main take- home message is that reverse trans-
lation of effective medical and behavioural treatments 
of addiction to animal models will improve their 
translational utility. This approach will increase our 
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mecha nistic understanding of effective treatments. 
In turn, this will allow forward translation of novel 
medications and behavioural approaches that mimic 
the efficacy of the established treatments in the animal 
models. From a clinical perspective, we propose a wider 
implementation of social- based behavioural treatments, 
including the community- reinforcement approach and 
innovative social media- based approaches (already in 
use for other psychiatric disorders262).

Additionally, from a reverse translational perspec-
tive, human imaging studies, in combination with 
social- based behavioural treatments, may help reveal 
the circuits controlling the protective effects of positive 
social interaction on drug- taking behaviour, and 
identify druggable targets that modify these circuits. 
Furthermore, reverse translation can be improved 
by including both sexes in testing potential medica-
tions in the animal models. For example, we recently 

reported that females are less sensitive than males to the 
antirelapse effects of potential medications42,176.

Finally, we argue that choice- based models may be 
particularly appropriate for medication testing because 
they not only mimic the clinical efficacy of contingency 
management but are also sensitive (in monkey models) 
to clinically effective opioid agonist therapy. For exam-
ple, methadone is preferentially effective in physi-
cally dependent but not non- dependent monkeys129. 
Remarkably, 65 years after the introduction of metha-
done210, and 29 years after the introduction of contin-
gency management161, little work has been devoted to 
identifying the circuitry through which these treatments 
operate. Reverse- translationally informed animal models 
could address that, and then allow evaluation of new 
treatments, with potentially reduced risk–benefit ratios42.
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Fig. 4 | Addiction treatment and animal models.  
A Venn diagram representing a vision for translation 
in addiction treatment is shown in the top panel. 
The intersection between preclinical (pink oval) and 
clinical (yellow oval) research represents the current 
translation problem (that is, that the combination of 
traditional models with new technologies has yet to 
improve on current options for addiction treatment). 
Therefore, it is important to understand and explore 
the intersection between clinical research and what 
works in humans (purple oval). Successful treatments 
include opioid maintenance treatment and behavioural 
treatments such as contingency management and the 
community- reinforcement approach. This suggests 
alternative approaches (blue oval) that can be 
integrated with preclinical research in a reverse 
translational approach, the goals of which are  
to clarify mechanisms of action, test new treatments  
and forward translate those new treatments to  
humans in ways that account for differences  
in treatment needs. In the bottom panel, we 
operationalize socially based ‘recovery capital’ as 
socio- economic status (x axis) and plot it against the 
propensity to transition from drug use to addiction  
(y axis). People whose drug use becomes addictive 
despite high socio- economic status may dispro-
portionately be those with endogenous (that is,  
genetic and/or neurobiological) vulnerabilities.  
A highly biomedicalized approach to addiction 
treatment (medications or neurostimulation) has 
an important place in public health, but its benefits 
are skewed towards the patients for whom those  
types of treatments may be necessary and nearly 
sufficient (upper- right quadrant). For other patients,  
those types of treatments may be necessary but 
insufficient (upper- left quadrant) or neither necessary  
nor sufficient (lower- left quadrant). If social- choice 
models can identify rodents with especially high 
propensities to resume drug seeking when social  
rewards are just slightly delayed or devalued, those 
rodents might be ideal for the screening of new 
biomedical or behavioural treatments for people  
whose addictions do not fully respond to psychosocial/
psychotherapeutic treatments. Grey dots, general 
population; pink dots, people who use drugs but do  
not become addicted; red dots, people who use drugs 
and become addicted. 
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